ANNA UNIVERSITY, CHENNAI AFFILIATED INSTITUTIONS B.E. COMPUTER SCIENCE AND ENGINEERING REGULATIONS – 2017 CHOICE BASED CREDIT SYSTEM

SEMESTER I

SI. No	COURSE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	P	С
THE	ORY			8191	thogb!			11
1.	HS8151	Communicative English	HS	4 2 90	4	0	0	4
2.	MA8151	Engineering Mathematics - I	BS	4	4	0	0	4
3.	PH8151	Engineering Physics	BS	3	3	0	0	3
4.	CY8151	Engineering Chemistry	BS	3	3	0	0	3
5.	GE8151	Problem Solving and Python Programming	ES	3	3	0	0	3
6.	GE8152	Engineering Graphics	ES	6	2	0	4	4

SEMESTER II

SI.No	COURSE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	P	С
HEOR	RY							
1.	HS8251	Technical English	HS	4	4	0	0	4
2.	MA8251	Engineering Mathematics - II	BS	4	4	0	0	4
3.	PH8252	Physics for Information Science	BS	3	3	0	0	3
4.	BE8255	Basic Electrical, Electronics and Measurement Engineering	ES	3	3	0	0	3
5.	GE8291	Environmental Science and Engineering	HS	3	3	0	0	3
6.	CS8251	Programming in C	PC	3	3	0	0	3

SEMESTER III

		SEI	MESIEKIII					
SI.No	COURSE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	P	C
THEO	RY							
1.	MA8351	Discrete Mathematics	BS	4	4	0	0	4
2.	CS8351	Digital Principles and System Design	ES	4	4	0	0	4
3.	CS8391	Data Structures	PC	3	3	0	0	3
4.	CS8392	Object Oriented Programming	PC	3	3	0	0	3
5.	EC8395	Communication Engineering	ES	3	3	0	0	3

SEMESTER IV

SI. No	COURSE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	P	С
THE	ORY	- 2037	REGULATIONS					
1.	MA8402	Probability and Queueing Theory	BS	4	4	0	0	4
2.	CS8491	Computer Architecture	PC	3	3	0	0	3
3.	CS8492	Database Management Systems	PC	3	3	0	0	3
4.	CS8451	Design and Analysis of Algorithms	PC	3	3	0	0	3
5.	CS8493	Operating Systems	PC	3	3	0	0	3
6.	CS8494	Software Engineering	PC	3	3	0	0	3

Signature of the HOD

MOUNT ZION COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING REGULATION 2017

B.E CSE - COURSE OUTCOMES (CO)

Course Code	Course Name	Course Outcome(CO) Students will be able to	Knowledge Level
<i>)</i> .		CO1: Develop the flowchart symbols and pseudo code for various notations.	K3
		CO2: Develop an algorithm for towers of Hanoi in a given list of data.	K3
		CO3: Execute to exchange the values of the given variables using tuple assignment.	K3
		CO4: Demonstrate a program into a recursion function using newton's methodology.	K2
	Problem	CO5: Decompose a python program in to recursion function for a Fibonacci program	K2
GE8151	Solving and Python Programming	CO6: Apply the arithmetic operations to manipulate the mathematical representation for the given data using python function.	К3
		CO7: Differentiate the concept of List, Tuples and dictionaries to fetch the given data.	K4
		CO8: Illustrate a program using sorting techniques to perform I/O operations.	K3
		CO9: Develop a program to read and write operations in a file.	K3
		C10: Applying the concept of errors and exceptions to copy the given file	K3

CO-PO MAPPING

00-		POs												
COs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
		K3	K4	K5	K5	K3/K5/K6	K3	K2	K3	K3	K2	K6	K6	
CO1	K2	2	1	-	-	2	2	3	2	2	3	-	ez	
CO2	K2	2	1	-	-	-	2	3	2	2	3		-	
CO3	K3	3	2	1	1 -	-	3	2	3	3	3	-	-	
CO4	K2	2	1	-	-	-	2	3	2	2	3	-	-	
CO5	K2	2	1	-	-	2	2	3	2	2	3		-	
CO6	K3	3	2	1	1	-	3	2	3	3	3		-	
CO7	K3	3	2	1	1	1	3	2	3	3	3			
CO8	K3	3	2	1	1	1	3	2	3	3	3	-		

STAFF : ROHINI P.

MOUNT ZION COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE **REGULATION 2017**

B.E CSE - COURSE OUTCOMES (CO)

Course Code	Course Name	Course Outcome (CO) Students will be able to	Knowledge Level
		CO01: Interpret the fundamental knowledge of Physics and its applications in engineering and technology.	K2
		CO02: Apply the concept of depression/ elevation of the beam and get expertise through experimental evidence.	К3
	S	CO03: Analyze the properties of lasers for low and high energy application.	К3
PH8151	ENGINEERING PHYSICS	CO04: Apply the total internal reflection properties of light in the optical fiber to find out the physical parameters like variation in temperature, pressure and displacement using FOC.	К3
PHS	ERI	CO05: Identify the mode of heat transfer in heat Exchangers.	К3
	SINE	CO06: Make use of the thermal properties of thermal insulating material in a wide range of applications.	К3
	ENC	CO07: Summarize the drawback of Classical Physics and overcome these drawbacks by quantum theory concept.	K2
		CO08: Make use of quantum theory concept to study the working of Scanning Tunneling Microscope technique and its Benefits.	К3
		CO09: Infer the basics of crystals and its structures.	K2
		CO10: Outline the different crystals growth techniques, and its advantages and disadvantages.	K2

CO-PO MAPPING

COs		POs												
COS		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
		K3	K4	K5	K5	K3/K5/K6	K4	K2	K3	K3	K2	K3	K3	
CO1	K2	2	1		-	-	-	-	-	-	-	-	-	
CO2	K3	3	2	1	1	-	-	-	-		-	-	-	
CO3	K3	3	2	1	1	-	-	-	-	-	-	-	-	
CO4	K3	3	2	1	1	-	-	-	-	-	-	-	-	
CO5	K3	3	2	1	1	-	-	-		-	-	-	-	
CO6	K3	3	2	1	1	-	-	-	-	-	-	-		
CO7	K2	2	1	-		-	-	-	-	-	-	-	-	
CO8	K3	3	2	1	1	-	-	-	-	-	-	-	-	
CO9	K2	2	1	-	-	-	-	-	-	-	-	-	-	
CO10	K2	2	1	-		-	-	-	-	-	-	-	-	

STAFF : DR. MANIKANDAN

Course Code	Course Name	Course Outcome(CO) Students will be able to	Knowledge Level
		CO1: Define the function and limit.	K1
		CO2: Solve the derivatives and maxima, minima.	К3
		CO3: Apply the Taylor series expansion in function.	К3
		CO4: Explain the concept of extreme values of the function.	K2
MA8151	ENGINEERING MATHEMATICS-I	CO5: Define the definite and indefinite integrals	K1
		CO6: Explain the concept of substitution rule.	K2
		CO7: Apply the concept of double integrals and triple integrals in problems.	К3
		CO8: Solve the double integrals using polar coordinates.	К3
		CO9: Apply the concept of method of variation of parameters in problems.	К3
		CO10: Define complementary function and particular integral.	K1
		CO11: Solve the simultaneous equations with constant coefficients.	К3

CO-PO MAPPING

COe							PO	S					
C3O1.2 C3O1.3 C3O1.4 C3O1.5 C3O1.6		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		K3	K4	K5	K5	K3/K5/K6							
C3O1.1	K1	1	-	-	-	1	-	-	-	-	-	-	-
C3O1.2	K3	3	2	1	1	1	-	-	-	-	-		-
C3O1.3	K3	3	2	1	1	1	-	-	-	-	-	-	-
C3O1.4	K2	2	1	-	-	-	-	-	-	-	-	-	-
C3O1.5	K1	1	-	-	-	1	-	-	-	-	-	-	-
C3O1.6	K2	2	1	-	-	-	-	-	-	-	-	-	-
C3O1.7	K3	3	2	1	1	1	-	-		-	-	-	-
C3O1.8	K3	3	2	1	1	1	-	-	-	-	-	-	-
C3O1.9	K3	3	2	1	1	1	-	-		-	-	-	-
C3O1.10	K1	1	-	-	-	1	-	-	-	-	-	-	-
C3O1.11	K3	3	2	1	1	1	-	-	-	-	-	-	-

MRS . MANIME GALA I

Course Code	Course Name	Course Outcome(CO) Students will be able to	Knowledge Level
		CO1: Define the function and limit.	K1
		CO2: Solve the derivatives and maxima, minima.	К3
		CO3: Apply the Taylor series expansion in function.	К3
	EN JON JEEPIN JO	CO4: Explain the concept of extreme values of the function.	K2
MA8151	ENGINEERING MATHEMATICS-I	CO5:Define the definite, indefinite integrals.	K1
	WATHEMATICS-I	CO6: Explain the concept of substitution rule.	K2
		CO7: Apply the concept of double integrals and triple integrals in problems.	К3
		CO8: Solve the double integrals using polar coordinates.	К3
		CO9: Apply the concept of method of variation of parameters in problems.	К3
		CO10: Define complementary function and particular integral.	, K1
		CO11: Solve the simultaneous equations with constant coefficients.	К3

CO-PO MAPPING

00							PO	s					
COs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		K3	K4	K5	K5	K3/K5/K6							
C3O1.1	K1	1.	-	-	-	1	-	-	-	-	-	-	-
C3O1.2	K3	3	2	1	1	1		-	-	-	-	-	-
C3O1.3	K3	3	2	1	1	1 .	-	-	-	-	-	-	-
C3O1.4	K2	2	1	-	-	-	-	-	-	-	-	-	-
C3O1.5	K1	1	-	-	-	1	-	-	-	-	-	-	-
C3O1.6	K2	2	1	-	-	-	-	-	-	-	-	-	-
C3O1.7	K3	3	2	1	1	1	-	-	٠-	-	-	-	-
C3O1.8	K3	3	2	1	1	1	-	-	-	-	-	-	-
C3O1.9	K3	3	2	1	1	1	-	-	-	-	-	-	-
C3O1.10	K1	1	-	-	-	1	-	-	-	-	-	-	
C3O1.11	K3	3	2	1	1	1	-	-	-	-	-	-	-

NAME OF THE STAFF: V.KARTHICK

VERIFIED BY HOD

Course Code	Course Name	Course Outcome(CO) Students will be able to	Knowledge Level
		C104.1: Boiler troubles-scale and sludges	K2
		C104.2: Desalination of brackish water	K3
		C104.3: Adsorption of solute from solutions	K2
	ENCHIEFPING	C104.4: Catalytic poison and catalytic promoters	K2
CY8151	ENGINEERING CHEMISTRY	C104.5: Significance of alloying	K1
	CHEMISTRI	C104.6: Thermal analysis and cooling curves	K2
		C104.7: Analysis of coal	K1
		C104.8: Power alcohol and biodiesel	K2
		C104.9: Nuclear chain reactions	K3
		C104.10: Solar energy conversion	K2
		C104.11: Fuel cells and super capacitors	K1

CO-PO MAPPING

CO-							PO	s					
COs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		K3	K4	K5	K5	K3/K5/K6	\$					7	
C104.1	K2	2	1	-	-	2	-	-	-	-	-	-	-
C104.2	K3	3	2	1	1	3	F -	-	-	-	-	-	-
C104.3	K2	2	1	-	-	2	-	-	-	-	-	-	-
C104.4	K2	2	1	-	-	2	-	-	-	-		-	-
C104.5	K1	1	-	-	-	1.	-	-	-	-	-	-	-
C104.6	K2	2	1	-	-	2	-	-	-	-	-	-	-
C104.7	K1	1	-	-	-	1	-	-	-	-	-	-	-
C104.8	K2	2	1	-	-	2	-	-	-	-	-	-08	-
C104.9	K3	-	2	1	1	3	-	-	-	-	-	-	-
C104.10	K2	2	1	-	-	3	-	-	-	-	-	-	-
C104.11	K1	1	-	-	-	1	-	-	-	-		-	-

Staff name: Dr. K.M. Mohamed Sheriff

Signature of HOD

MOUNT ZION COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF CSE **REGULATION 2017**

B.E CSE -	COURSE	OUTCOMES	(CO)
-----------	---------------	-----------------	------

Course Code	Course Name	Course Outcome(CO) Students will be able to	Knowledge Level
		C101.1:Practice and understanding knowledge Skimming and Scanning with Speaking about oneself to develop the speaking level	K2
		C101.2: Applying question in the area of W-H questions can able to write and speak in effective way	К3
HS8151	COMMUNICATIVE ENGLISH	C101.3: To remember and able to communicate in Telephonic Conversations and workout in the chart	K1
		C101.4: Applying knowledge in Prepositions to Identify the meaning and able to communicate with effectively	К3
		C101.5:Understand and able to write that Jumbled Sentences Adverbs work sheet to develop the communicative skills	K2

CO-PO MAPPING

COs		Pos													
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
		K3	K4	K5	K5	K3/K5/K6									
C101.1	K2	1	1.	-	-	-	-	-	-	-	-000	-	-		
C101.2	К3	3	2	1	-	-	-	-	-	-	-	-	-		
C101.3	K1	1	-	-	-	-	-	-	-	-	-	-	-		
C101.4	К3	3	2	1	-	-	-	-	-	-	-	-	-		
C101.5	K2	2	1	-	-	-	-	-	-	-	-	-	-		

Staff name: C.Chellapandi

Signature of HOD

Tholsem

MOUNT ZION COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF CSE REGULATION 2017 B.E CSE - COURSE OUTCOMES (CO)

Course Code	Course Name	Course Outcome(CO) Students will be able to	Knowledge Level
		C101.1:able to understanding and Listening gap exercise to create practical knowledge in communicative English	K2
		C101.2:remember and work out for in writing Instructions plans to written knowledge	K1
HS8251	TECHNICAL	C101.3: to applying knowledge in Interpreting charts and exercise and using tenses to writing process	К3
	ENGLISH	C101.4:understanding Numerical Adjectives and model verbs to develop the communication of writing work	K2
		C101.5:practice in speed reading listing and understanding the words and can able to speak in practical manner	K2

CO-PO MAPPING

COs		Pos													
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
		K3	K4	K5	K5	K3/K5/K6									
C101.1	K2	2	1	-	a-	-	-	-	-	-	-	-	-		
C101.2	K1	1	-	-	-	-	-	-	-	-	-	-	-		
C101.3	К3	3	2	1	-	V	-	-	-	-			-		
C101.4	K2	2	1	-	-	/	-	-	-	-	-	-	-		
C101.5	K2	2	1	-	- (-	-	-	-		-	-		

Staff name: C.Chellapandi

Signature of HOD

MOUNT ZION COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE REGULATION 2017

B.E CSE - COURSE OUTCOMES (CO)

Course Code	Course Name	Course Outcome (CO) Students will be able to	Knowledge Level
		CO01: Interpret the fundamental knowledge on classical and quantum electron theories.	K2
		CO02: Classify the materials into metals, semiconductors and insulators on the basis of band theory of solids.	K2
		CO03: Identify the properties of intrinsic and extrinsic semiconductors.	К3
		CO04: Outline the Hall effects and its applications	K2
		CO05: Compare the magnetic properties of materials.	K2
PH8252	PHYSICS FOR INFORMATION	CO06: Show the magnetic storage devices and their applications.	K2
	SCIENCE	CO07: Illustrate the functioning of optical materials for optoelectronics.	K2
		CO08: Apply the concept of optoelectronics and get expertise the photodiode, LED, solar cells etc.	К3
		CO09: Infer the basics of quantum structures and their applications in carbon electronics.	K2
		CO10: Make use of quantum theory concepts to study the density of states in various dimensions.	K2

CO-PO MAPPING

CO	Mari						PO	S					
COs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		K3	K4	K5	K5	K3/K5/K6	K4	K2	K3	K3	K2	K3	K3
CO1	K2	2	1	-	-	-	-	-	-	-	-	-	-
CO2	K2	2	1	-	-	-	-	-	-	-	-	-	-
CO3	K3	3	2	1	1	-	-	-	-	-	-	-	-
CO4	K2	2	1	-	-	-		-	-	-	-	-	-
CO5	K2	2	1	-		-	-	-	-	-	-	-	-
CO6	K2	2	1		-	-	-	-	-	-	-	-	-
CO7	K2	2	1	-	-	-	-	-	-	-	-	-	-
CO8	K3	3	2	1	1	-	-	-	-	-	-	-	-
CO9	K2	2	1	-	-	-	-	-	-	-	-	-	-
CO10	K2	2	1	-	-	-	-	-	-	-	-	-	-

DR. MANIKANDAN

Course Code	Course Name	Course Outcome(CO) Students will be able to	Knowledge Level
		C105.1: Ecological succession process	K2
		C105.2: Threats to biodiversity	K3
		C105.3: Solid waste management	K1
		C105.4: Role of individual in prevention of pollution	К3
GE8291	ENVIRONMENTAL SCIENCE AND	C105.5: Timber extraction and forest resources	K2
	ENGINEERING	C105.6: Bioconversion of pollutants	K1
		C105.7: Urban problems related to energy	K3
		C105.8: Resettlement and rehabilitation of people	K1
		C105.9: Environment pollution act	K1
		C105.10: Population explosion	K3
		C105.11: Women and child welfare	K1

CO-PO MAPPING

00-							PO	s					
COs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		K3	K4	K5	K5	K3/K5/K6							N. C.
C105.1	K2	2	1	-	-	2	-	-	-	-	-	-	-
C105.2	K3	3	2	1	1	3	-	-	-	-	-	-	-
C105.3	K1	1	-	-	-	1	-		-	-	-	-	-
C105.4	K3	3	2	1	1	3	-	-	-	-	-	-	-
C105.5	K2	2	1	-	-	2	-	-	-	-	-	-	-
C105.6	K1	1	-	-	-	1	-	-	-	-	-	-	-
C105.7	K3	3	2	1	1	3	-	-	-	-	-	-	-
C105.8	K1	1	-	-	-	1	-	-	-	-	-	-	-
C105.9	K1	1	-	-	-	1	-	-	-	-	-	- 1	-
C105.10	K3	3	2	1	1	3	-	-	-	-	-	-	-
C105.11	K1	1	-	-	-	1	-	-	-	-	-	-	-

Staff name: Dr. K.M. Mohamed Sheriff

Signature of HOD

Course Code	Course Name	Course Outcome(CO) s will be able to	Knowledge Level	
		C206.1	Develop simple applications in C using basic concept	K3
		C206.2	Implement basic applications using arrays and strings concepts in C	K3
CS8251 Programming	Programming in C	C206.3	Apply function concepts to design application	K3
	in C	C206.4	Understand the concepts of pointers and its usage	K2
		C206.5	Apply data structures in C applications	K3
		C206.6	Design file processing using C for simple applications	K3

CO-PO MAPPING

COs		POs													
COS		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
		K3	K4	K5	K5	K3/K5/K6									
C206.1	K3	3	2	1	1	-	-	-	-	-	-	-	-		
C206.2	K3	3	2	1	1	1	-	-	-	-	-	-	-		
C206.3	K3	3	. 2	1	1	-	-	-	-	-	-	-	-		
C206.4	K2	2	1	-	-		-	-	-	-	-	-	-		
C206.5	K3	3	2	1	1	-	-	-	-	-	-	-			
C206.6	K3	3	2	1	1	1	-	-	-	-	-	-	-		

MYS. ROMINI P.

Course Code	Course Name	Course Outcome(CO) Students will be able to	Knowledge Level
	Q014 v	CO1: Define the Eigen values and Eigen vectors of the matrix.	K1
		CO2: Apply the concept of Cayley-Hamilton theorem in inverse and powers of the matrix.	К3
,		CO3: Explain the concept of canonical form of the given quadratic form.	K2
		CO4: Explain the concept of solenoidal and irrotational vector.	K2
MA8251	ENGINEERING MATHEMATICS-II	CO5: Apply the concept of Gauss divergence, Stoke's and Green's theorem.	К3
		CO6: Apply the concept of Cauchy –Riemann equations	K3
		CO7: Solve the bilinear transformation problems.	К3
		CO8: Apply the concept of Cauchy's integral theorem and integral formula.	К3
		CO9: Solve the Laurent expansions and contours problems.	K3
		CO10: Define Laplace transform, unit step function and impulse functions.	K1
		CO11: Solve the inverse Laplace transform by using convolution theorem and solve simultaneous equations with constant coefficients.	К3

CO-PO MAPPING

COs		Pos														
cos		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
		K3	K4	K5	K5	K3/K5/K6										
C3O1.1	K1	1	-	-	-	1	-	-	-	-	-	-	-			
C3O1.2	K3	3	2	1	i	i	-	-	-	-	-	-	-			
C3O1.3	K2	2	1		-	-	-	-	-	-	-	-	-			
C3O1.4	K2	2	1	-	-	-	-	-	-	-	-	-	_			
C3O1.5	K3	3	2	1	1	1	-	-	-	-	-	-	-			
C3O1.6	K3	3	2	1	1	1	-		-	-	-	-	-			
C3O1.7	КЗ	3	2	1	1	1										

C3O1.8	K3	3	2	1	1	1111111111	115	361	13-9	HAY	-V411	17-7	CHAI
C3O1.9	K3	3	2	1	1	3 11 17	11:/1	975	Ye	-	-	-	-
C3O1.10	K1	1	-	-	-	1	P - 7	1234	-	-	-	-	-
C3O1.11	K3	3	2	1	1	1	100	1000	-		-	-	-

NAME OF THE STAFF: S.MANIMEKALAI

VERIFIED BY HOD

MOUNT ZION COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF CSE REGULATION 2017

B.E CSE - COURSE OUTCOMES (CO)

Course	Course Name	Course Outcome(CO)	Knowledge			
Code		Students will be able to	Level			
		CO1: Define the Eigen values and Eigen	K1			
		vectors of the matrix.				
		CO2: Apply the concept of Cayley-Hamilton	K3			
		theorem in inverse and powers of the matrix.				
		CO3: Explain the concept of canonical form of	K2			
		the given quadratic form.	K2			
		CO4: Explain the concept of solenoidal and	W2			
		irrotational vector.	K2			
3.6.4.00.51	ENGINEERING	CO5: Apply the concept of Gauss divergence,	T/O			
MA8251	MATHEMATICS-II	Stoke's and Green's theorem.	K3			
		CO6: Apply the concept of Cauchy -Riemann	150			
		equations	K3			
		CO7: Solve the bilinear transformation	***			
		problems.	K3			
		CO8: Apply the concept of Cauchy's integral				
	105	theorem and integral formula.	K3			
		CO9: Solve the Laurent expansions and				
		contours problems.	K3			
		CO10: Define Laplace transform, unit step				
h N		function and impulse functions.	K1			
		CO11: Solve the inverse Laplace transform by				
		using convolution theorem and solve				
		The state of the s	K3			
		simultaneous equations with constant				
	<u> </u>	coefficients.				

CO-PO MAPPING

CO							Po	S					
COs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		K3	K4	K5	K5	K3/K5/K6							
C3O1.1	K1	1	-	-	-	1	-	-	-	-	-	-	-
C3O1.2	K3	3	2	1	1	1	-	-	-	-	-	-	-
C3O1.3	K2	2	1	-	-	-	-	-	-	-	-	-	-
C3O1.4	K2	2	1	-	-		-	-	-	-	-	-	-
C3O1.5	K3	3	2	1	1	1	-	-	-	-	-	-	-
C3O1.6	K3	3	2	1	1	1	-	-	-	-	-	-	-
C3O1.7	K3	3	2	1	1	1	-	-	-	-	-	-	-

C3O1.8	K3	3	2	1	1	1	-	-	-	-	-	-	-
C3O1.9	K3	3	2	1	1	1	-	-	-	-	-	-	-
C3O1.10	K1	1	-	-	-	1	-	-	-	-	-	-	-
C3O1.11	K3	3	2	1	1	1	-	-	-	-	-	-	-

NAME OF THE STAFF: V.KARTHICK

VERIFIED BY HOD

Head of the Department

Computer Science & Engine Fly
Mount Zion College of English & 188h
Pudukkottai - 522 507

COURS	SE CODE	BE8255		L	T	P	C
COURS	SE NAME	BASIC ELECTRICAL ELECTRONICS MEASUREMENT ENGINEERING		3	0	0	
PRERE	QUISITE	Knowledge in Electrical, electrical instru	umentation	L	T	P	H
: C:P:A		3:0:0		3	0	0	3
COURS	all students	MES-On successful completion of will be able to	Domain]	Leve		
CO1	Study AC networks	system and power performance in electrical	Cognitive	1	Jnde	rstar	nd
CO2	Design st application	ep down transformer for commercial ons.	Cognitive		Appl	y	
CO3	Study the	e applications of DC	Cognitive		Anal	yse	
CO4	Study ap	oplications of AC	Cognitive		Appl	у	
CO5	Demostr	rate the application of various electronic ntation.	Cognitive		Und	ersta	nd
CO6	Design apr	olication using stepper motor.	Cognitive		Desi	gn	
CO7	Apply the system.	principle of electrical laws in star network	Cognitive				

Table 1: Mapping of COs with Pos

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO12	PSO1	PSO 2
CO 1	0	0	2	1	2	0	0	0	0	0	0	1		
CO 2	1	0	0	0	0	0	0	0	0	0	0	0		
CO 3	1	2	0	0	0	0	0	0	0	0	0	0		
CO 4	0	1	0	1	1	0	2	0	0	1	0	0		-
CO 5	2	0	0	3	0	0	0	0	1	0	0	1		
CO6	2	0	0	0	1	0	0	0	0	0	0	0		
CO7	1	2	0	0	10	0	0	1	0	0	0	1 1		

0 - No Relation, 1- Low Relation, 2- Medium Relation, 3- High Relation

STAFF : MT . RAMKUMAR

K. DORYA

DISCRETE MATHEMATICA

TITA SEM.

MOUNT ZION COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF CSE REGULATION 2017 B.E CSE - COURSE OUTCOMES (CO)

Course Code	Course Name	Course Outcome(CO) Students will be able to	Knowledge Level
		CO1: Define the Logical operators.	K1
		CO2: Explain the concepts needed to test the Logic of a program.	K2
		CO3: Solve the problems using logical Operators.	К3
	DISCRETE	CO4: Identify the structures on many levels.	K1
MA8351	MATHEMATICS	CO5: Explain the rules of inference.	K2
		CO6: Define Graphs and Graph models.	K1
		CO7: Apply Graph terminology in problems.	K3
		CO8: Explain the concept of Algebraic Structure.	K2
		CO9: Apply finite set into another set which relates to input and output functions.	К3
		CO10: Define lattices and Boolean algebra.	K1
		CO11: Solve the problems on lattices.	K3

CO-PO MAPPING

COs							PO	s					
003		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		K3	K4	K5	K5	K3/K5/K6		7417	- 1				1012
C3O1.1	K1	1	- 1	-	-	1	-	-	-	-	-	-	-
C3O1.2	K2	2	1	-	-		-	-	-	-	-	-	
C3O1.3	K3	3	2	1	1	1	-	-		-	-	-	-
C3O1.4	K1	1			-	1	-	-			-	-	-
C3O1.5	K2	2	1	-			-	-			-		
C3O1.6	K1	1	-	-	-	- 1		-	-	-	-		-
C3O1.7	K3	3	2	1	1	1	-	-		-	-		-
C3O1.8	K2	2	1	-	-	-	-	-	-		-		
C3O1.9	K3	3	2	1	1	1	-	-	-	-	-	-	
C3O1.10	K1	1	-	-	-	1		-	-	-	-	4.	
C3O1.11	K3	3	2	1	1	1	-	-	-	-	-	-	

N. SUBASHINI
2018-19 odd sem
3 rd Semester.

MOUNT ZION COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF CSE REGULATION 2017 B.E CSE - COURSE OUTCOMES (CO)

Course Code	Course Name		Course Outcome(CO) Students will be able to	Knowledge Level
		C205:1	Discuss the various analog modulation techniques	K2
		C205:2	Infer the generation and detection of AM and FM waves	K2
		C205:3	Interpret the process of sampling,multiplexing and quantisation used in digital modulation techniques	K2
		C205:4	Design a vocoder using PCM technique which improves voice clarity in digital modulation	К3
	Communication	C205:5	State pseudorandom sequences and its properties to improve band pass transmission	K1
EC8395	Engineering	C205:6	Discover an eye pattern using cosine filter to have a high precision quality signals for high rate transmission	К3
		C205:7	Predict the code efficiency using Huffman coding and verify with Shannons law	К3
		C205:8	Construct an algorithm for bit error control using linear block codes.	K3
		C205:9	Classify the various multiple access method supporting wireless communication	K2
		C205:10	Manipulate the CDMA technique for improving security encryption purpose in mobile communication	К3

CO-PO MAPPING

Cos							Po	S		WVI			
Cos		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		K3	K4	K5	K5	K3/K5/K6	K4	K2	K3	K3	K2	K3	K3
C205:1	K1	2	1	-	-	-	-	-	-	-	-	-	-
C205:2	K2	2	1	-	-	2	-	-	-	-	-	-	-
C205:3	K2	2	1	-	-	2	-	-	-	-	-	-	-
C205:4	K3	3	2	1	-	3	-	-	-	3	-	-	-
C205:5	K1	1	-	-	-	1	-	-	-	-	-	-	-
C205:6	K3	3	2	1	-	3	-	-	-	3	-	-	-
C205:7	K3	3	2	1	-	3	-	-	-	-	-	-	-
C205:8	K2	3	2	1	-	3	-	-	-	3	-	-	-
C205:9	K2	2	1	-	-	2	-	-	-		-	-	-
C205:10	K3	3	2	1	-	3	-	-	-	-	-	-	-

Mount Zone of the Department o

MOUNT ZION COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE OUTCOMES - REGULATION 2017

Course	Course Name	Course C	Outcome	Knowledge
Code		Students	will be able to	Level
CS8351	Digital Principles and System	C202.1	Solve Boolean functions using K-map and Cluskey methods	K2
	Design	C202.2	K1	
		C202.3	Identify basic functions of logic gates Design various combinational circuits to perform simple arithmetic operations	K3
		C202.4	Retrieve the basic components of hardware description language	K1
		C202.5	Interpret the design procedures of synchronous sequential logic circuits	K2
		C202.6	Write HDL code for combinational and synchronous sequential circuits	K3
		C202.7	Recognize the various hazards and timing problems occurring in combinational and sequential digital designs	K1
		C202.8	Compare the design challenges available in synchronous and asynchronous digital logic circuits	K2
		C202.9	Contrast various semiconductor memory arrays	K2
		C202.10	Implement combinational logic circuits using programmable logic array	. К3

CO-PO Mapping

CO						P	rogram	Outcom	ies				
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		К3	K4	K5	K5	K3/K5 /K6				105	1010	1011	1012
C202.1	K2	2	1	-	-	-	-	-	-		-	_	-
C202.2	K1	1	-	-					-	_	_		-
C202.3	K3	3	2	1	1		-					-	-
C202.4	K1	-	-	-	-		-				-	•	-
C202.5	K2	2	1		-	-	_					-	
C202.6	K3	3	2	1	1	1	-				-	-	-
C202.7	K1	-	-		-	-	-		-			-	-
C202.8	K2	2	1		-			-	-		-	•	-
C202.9	K2	2	1		-	-		-	-			-	-
C202.10	КЗ	3	2	1	1	_					-	-	-
C202		1	1	1	1				-			-	-

STAFF: TAKIALA DEVA PRIYA

CS8392-OBJECT ORIENTED PROGRAMMING

Course Code	Course Name	Course Outcome(CO) Students will be able to	Knowledge Level
		CO1: Define fundamental of object oriented programming concept in java.	K1
		CO2: Discuss classes, objects, member of a class and relationship among them needed to create student data.	K2
		CO3: Demonstrate the concept of Inheritance and interface.	К3
	OBJECT	CO4: Create employee pay roll system using inheritance and interface concepts in java.	K1
CS8392	ORIENTED PROGRAMMING	CO5: Define the concept of exception handling and I/O streams.	K2
		CO6: Develop cellular mobile system using exception handling in java.	K1
		CO7: Demonstrate the concept of multi Threading and generic programming.	К3
		CO8: Create threads for solving algebraic equation and sorting of array in java.	K2
		CO9: Create the word, character and vowel Count application using swing concept. in java.	К3

CO-PO MAPPING

00							P	Os					
COs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		K3	K4	K5	K5	K3/K5/K6							
C3O1.1	K1	1	-	-	-	1	-	-	-	-	-	-	-
C3O1.2	K2	2	1	-	-	-	-	-	-	-	-	-	-
C3O1.3	K3	3	2	1	1	1	-	-	-	-	-	-	-
C3O1.4	K1	1	-	-	-	1	-	-	-	-	-	-	-
C3O1.5	K2	2	1	-	-	-	-	-	-	-	-	- '	-
C3O1.6	K1	1	-	-	-	1	-	-	-	-	-	-	-
C3O1.7	K3	3	2	1	1	1	-	-	-	-	-	-	-
C3O1.8	K2	2	1	-	-	-	-	-	-	-	-	-	-
C3O1.9	K3	3	2	1	1	1	-	-	-	-	-	-	-
C3O1.10	K1	1	-	-	-	1	-	-	-	-	-	-	-
C3O1.11	K3	3	2	1	1	1	-	-	-	-	-	-	-

STAFF: RAMYA B

MOUNT ZION COLLEGE OF ENGINEERING AND TECHNOLOGY

COURSE OUTCOME

CS8391 - DATA STRUCTURES

- C203.1 Implementation of the list abstract data type using sequence of nodes with array. (K3)
- C203.2 Implementation of the stack and queue abstract data type using first in first out and first in last out with array. (K3)
- C203.3 Apply Linked List abstract data type to perform insertion, deletion, transverse and display operation in the data set. (K3)
- C203.4 Create arithmetic expression to convert infix to post fix conversion using stack abstract data type. (K5)
- C203.5 Create sharing of memory resources using queue abstract data type. (K5)
- C203.6 Apply binary search tree to create binary search tree of integers problem using C. (K3)
- C203.7 Develop depth first traversal and breadth first traversal using graph traversal algorithm. (K3)
- C203.8- Analyze to find a value from a list of integers using linear and binary search algorithm. (K4)
- C203.9 Analyze to arrange a list of integers in ascending order using the different sorting algorithm (K4).

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CO - PO MAPPING

CO# PO1 (K3) PO2(K4) PO3(K5)	С203.1 (КЗ)	C203.2 (КЗ) 3	С203.3(К3) 3	C203.4(K5) 3	C203.5(K5) 3	С203.6(КЗ) 3	C203.7(K3) 3	C203.8(K4)		
)2(K4)	2	2	2	w	3	2	2	ω	ω	,
РОЗ(К5)	1	1	1	3	3	1	1	2	2	3
PO4(K5)	1	1	1	3 -	3 -	1	1	2	2 -	2
PO5(K3/K 5/K6)	-	-	-	-	-	-			•	
РО6(К4)	2	2	2	3	3	2	2	3	3	3
P07(K2)	. 3-	3 -		3	3	3	3	3	3	ω.
P08	•	-	3 -	•		•		-		
P09	•	-	•	•	-	-	-1		'	
PO10(K2)	3	3	3	3	3	3	3	3	3	3
PO11	1	1	1	1	ω -	•	1	1	1	
PO12	'		'	'		1	-	•	'	

STARE: SENTHIL RAJA MANOKAR

K. TURGE IV TO SEM PRT

Tithgom

COURSE OUTCOME

	COURSE OUTCOME	KNOWLEDGE LEVEL
C201.1	Identify the functions of discrete and continuous random variables, moments and moment generating function.	K1
C202.2	Solve problems in marginal conditional distribution, using the concepts of correlation, regressions and transformation of two dimensional random variables.	К3
C202.3	Determine the process is either SSS or WSS, find the TPM of Markov chain and its classifications	Кз
C2042.4	Analyze the concepts of queuing models.	K4
C202.5	Apply non Markovian queues to open and closed networks.	К3

CO-PO MAPPING

CC)			,		1	Program	Outcom	es				
		P01	PO2	PO3	PO4	PO5	P06	P07	PO8	P09	PO10	PO11	PO12
		К3	K4	K5	K5	K3/K5/ K6							
C201.1	K1	1	-	-	-	-	-	-	-	-	-	-	
C201.2	К3	3	2	1	1	-	-	-	-	-	-	13-1	-
C201.3	К3	3	2	1	1	-	-	-	-	-	-		
C201.4	K4	3	3	2	2	-	-	-	-	_	-	_	
C201.5	К3	3	2	1	1	-	-	-	l -	-	_		
C201		2.6	1.8	1	1	-	-	-					

MOUNT ZION COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING REGULATION 2017

B.E CSE - COURSE OUTCOMES (CO)

Course Code	Course Name	Course Outcome(CO) Students will be able to	Knowledge Level
		CO1: Understand the Fundamental base of software development process in various criteria.	K2
		CO2: Design the requirements of software specification of function and non-functional basis.	K2
	Software	CO3: Develop the architectural design of various components for the given data.	K3
CS8494	Engineering	CO4: Apply the technique of testing fundamental of each developed coding section.	K3
		CO5: Analyzing the software project management and risk management techniques of Various levels of criteria for the given set of elements.	K4

CO-PO MAPPING

COs		POs											
COS		PO1	PO2	PO3	PO4	PO5	PO6	PO7					
		K2	K3	K2	K5	K3/K5/K6	K3	K2					
C411.1	K2	3	2	3	-	2	2	3					
C411.2	K2	3	2	3	-	-	2	3					
C411.3	K3	3	3	3	1	-	3	3					
C411.4	K3	3	3	3	2	-	3	3					
C411.5	K4	1	2	2	-	-	2	2					

STAFE: ROHINI P.

Course Code & Course Name : CS8491 - COMPUTER ARCHITECTURE

Course Outcome(CO) Students will be able to	Knowledge Level
CO1 : Understand the basic structure and operations of a computer	К2
CO2 : List out the instructions in MIPS.	K1
CO3: Identify the arithmetic operations of ALU.	K1
CO4 : Perform arithmetic operations on binary numbers.	КЗ
CO5 : Discuss the addressing modes available in MIPS.	K2
CO6 : Understand the basics of pipelining	К2
CO7 : Understand the memory hierarchies, cache memory and virtual memory	К2
CO8 : Contrast the single core processor and the multi core Processor.	КЗ
CO9 : Contrast the direct memory access and the programmed I/O.	КЗ
CO10: Calculate the performance of cache memory.	КЗ

CO-PO MAPPING

COs		POs												
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
		К3	K4	K5	K5	K3/ K5/ K6	K4	K2	К3	К3	K2	К3	КЗ	
CO1	K2	2	1		•	2	1	3	2	2	3	2	2	
CO2	K1	-	-	-			-	2	-	-	2	-	-	

K1	-	-	-	-	-	-	2	-	-	2	-	-
КЗ	3	2	1	1	3	2	3	3	3	3	3	3
К2	2	1	-	-	2	1	3	2	2	3	2	2
K2	2	1	-	-	2	1	3	2	2	3	2	2
K2	2	1	-	-	2	1	3	2	2	3	2	2
КЗ	3	2	1	1	3	2	3	3	3	3	3	3
КЗ	3	2	1	1	3	2	3	3	3	3	3	3
КЗ	3	2	1	1	3	2	3	3	3	3	3	3
	K3 K2 K2 K2 K3	K3 3 K2 2 K2 2 K2 2 K3 3 K3 3	K3 3 2 K2 2 1 K2 2 1 K2 2 1 K3 3 2 K3 3 2	K3 3 2 1 K2 2 1 - K2 2 1 - K2 2 1 - K3 3 2 1 K3 3 2 1	K3 3 2 1 1 K2 2 1 - - K2 2 1 - - K2 2 1 - - K3 3 2 1 1 K3 3 2 1 1	K3 3 2 1 1 3 K2 2 1 - - 2 K2 2 1 - - 2 K2 2 1 - - 2 K3 3 2 1 1 3 K3 3 2 1 1 3	K3 3 2 1 1 3 2 K2 2 1 - - 2 1 K2 2 1 - - 2 1 K2 2 1 - - 2 1 K3 3 2 1 1 3 2 K3 3 2 1 1 3 2	K3 3 2 1 1 3 2 3 K2 2 1 - - 2 1 3 K2 2 1 - - 2 1 3 K2 2 1 - - 2 1 3 K3 3 2 1 1 3 2 3 K3 3 2 1 1 3 2 3	K3 3 2 1 1 3 2 3 3 K2 2 1 - - 2 1 3 2 K2 2 1 - - 2 1 3 2 K2 2 1 - - 2 1 3 2 K3 3 2 1 1 3 2 3 3 K3 3 2 1 1 3 2 3 3	K3 3 2 1 1 3 2 3 3 3 K2 2 1 - - 2 1 3 2 2 K2 2 1 - - 2 1 3 2 2 K2 2 1 - - 2 1 3 2 2 K3 3 2 1 1 3 2 3 3 3 K3 3 2 1 1 3 2 3 3 3	K3 3 2 1 1 3 2 3 3 3 3 K2 2 1 - - 2 1 3 2 2 3 K2 2 1 - - 2 1 3 2 2 3 K2 2 1 - - 2 1 3 2 2 3 K3 3 2 1 1 3 2 3 3 3 3 3	K3 3 2 1 1 3 2 3 3 3 3 3 3 K2 2 1 - - 2 1 3 2 2 3 2 K2 2 1 - - 2 1 3 2 2 3 2 K3 3 2 1 1 3 2 3 <td< td=""></td<>

Year /Sem : II/IV

Faculty Name: M.S.Ramadevi

Co No	Course Outcome	Knowledge Level
C251.1	Understand about fundamentals of algorithmic problem solving	K1
C251.2	Recognize various algorithm design techniques for its application.	K2
C251.3	Compare the complexities of different method of analysis for the same set of problems.	K4
C251.4	Discuss various advanced topics on algorithms	K2
C251.5	Understand NP completeness and identify different NP complete problems.	К2

COs		POs											
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		КЗ	КЗ	K6	K6	КЗ	КЗ	K6	КЗ	КЗ	K2	K6	К3
C251.1	K1	1	1	*	*	1	1	*	1	1	2	*	1
C251.2	K2	2	2	*	*	2	2	*	2	2	3	*	2
C251.3	K4	3	3	1	1	3	3	1	3	3	3	2	3
C251.4	K2	2	2	*	*	2	2	*	2	2	3	*	2
C251.5	K2	2	2	*	*	2	2	*	2	2	3	*	2

MOUNT ZION COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF CSE

B.E CSE – COURSE OUTCOMES (CO)

Course Code &Name: C205-CS8493 Operating Systems

REGULATION:R2017

YEAR/SEM: II/IV

COURSE OUTCOMES

Course Code	Course Name		Knowledge Level		
		C205.1	Explain the basic concepts and functions of Operating Systems	K2	
		C205.2	Outline various threading models, process synchronization and deadlocks	K2	
CS8493	Operating Systems	C205.3	Compare the performance of various CPU scheduling algorithms	K2	
	Systems	C205.4	Compare and contrast various memory management schemes	K2	
		C205.5	Explain I/O management and file systems	K2	
		C205.6	Model Linux multifunction server and utilize local network services by using	К3	

CO PO MAPPING

COs		POs													
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO11	PO12		
		K3	K4	K5	K5	K3/K5/ K6									
C205.	K2	2	1	-	-	2	-		-	-	-	-	•		
C205.	K2	2	1		-	2	-		-	-	-	-	-		
C205.	K2	2	1	-	-	2	-	•	-	-	-	-	-		
C205.	K2	2	1	•	-	2	•		-		-	-	-		
C205.	K2	2	1		-	2	-		-	-	•	•	•		
C205.	К3	3	2	1	1	3	•	-	-	-	-	•			

STAFF: PRIYA K.

MOUNT ZION COLLEGE OF ENGINEERIN G AND TECHNOLOGY

COURSE OUTCOME

CS8492 - DATABASE MANAGEMENT SYSTEMS

- C204.1 Create relational database schema design for university database. (K5)
- C204.2 Apply DDL and DML query statement to create relation for database. (K3)
- C204.3 Create Entity-Relationship model for online reservation system. (K5)
- C204.4 Develop queries using different type of Normal Form. (K5)
- C204.5 Create databases using concurrency and transaction process. (K5)
- C204.6 Write queries and compare different strategies of transaction control. (K3)
- C204.7 Compare and contrast various indexing strategies in different database systems (K3)
- C204.8- Analyze how advanced databases differ fr om traditional databases. (K4)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CO - PO MAPPING

CO#	PO1 (K3)	PO2(K4)	PO3(K5)	PO4(K5)	PO5(K3/K 5/K6)	PO6(K4)	PO7(K2)	PO8	PO9	PO10(K2)	PO11	PO12
C204.1 (K5)	3	2	3	3	-					-		<u> </u>
C204.2 (K3)	3	2	1	1	-	0.	-					
C204.3(K5)	3	2	3	3	-	- i	-	_		-	_	_
C204.4(K5)	3	3	3	3	-		-					
C204.5(K5)	3	3	3	3	_	<u>.</u>	-		4			
C204.6(K3)	3	2	1	1	_		_		_	_		
C204.7(K3)	3	2	1	1			_	-	-	_	1	
C204.8(K4)	3	3	2	2		_		1		-		
C204	3	3	3	3							_	_

STAFF: SENTHIL RAJA MANORIR

Head of the Department

Computer Science & Engineering
Mount Zion College of Engg. & Tec.
Pudukkottai - 622 507